
NASA/CR-1999-209558
ICASE Report No. 99-38

ICASE
The Design of Sparse Direct Solvers Using
Object-oriented Techniques

Florin Dobrian and Gary Kumfert
Old Dominion University, Norfolk, Virginia

Alex Pothen
Old Dominion University, Norfolk, Virginia
and
ICASE, Hampton, Virginia

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

I\TA£A

National Aeronautics and
Space Administration

19991006 120

Langley Research Center M Prepared for Langley Research Center

Hampton, Virginia 23681-2199 $f wdeT Contract NAS1-97046

September 1999

^CQUALiry

THE DESIGN OF SPARSE DIRECT SOLVERS USING OBJECT-ORIENTED

TECHNIQUES

FLORIN DOBRIAN*, GARY KUMFERTt, AND ALEX POTHEN*

Abstract. We describe our experience in designing object-oriented software for sparse direct solvers.

We discuss Spindle, a library of sparse matrix ordering codes, and 06U0, a package that implements the

factorization and triangular solution steps of a direct solver. We discuss the goals of our design: managing

complexity, simplicity of interface, flexibility, extensibility, safety, and efficiency. High performance is ob-

tained by carefully implementing the computationally intensive kernels and by making several tradeoffs to

balance the conflicting demands of efficiency and good software design. Some of the missteps that we made

in the course of this work are also described.

Key words, minimum-degree ordering algorithms, object-oriented software design, sparse direct meth-

ods, sparse indefinite problems

Subject classification. Computer Science

1. Introduction. We design and implement object-oriented software for solving large, sparse systems

of linear equations by direct methods. Sparse direct methods solve systems of linear equations by factoring

the coefficient matrix, employing graph models to control the storage and work required. Sophisticated

algorithms and data structures are needed to obtain efficient direct solvers. This is an active area of research,

and new algorithms are being developed continually. Our goals are to create a laboratory for quickly
prototyping new algorithmic innovations, and to provide efficient software on serial and parallel platforms.

Object-oriented techniques have been applied to iterative solvers such as those found in Diffpack [10, 22]
and PETSc [5, 27]. However, the application of object-oriented design to direct methods has not received the

attention it deserves. Ashcraft and Liu have designed an object-oriented code called SMOOTH to compute
fill-reducing orderings [3]. Ashcraft et al. have created an object-oriented package of direct and iterative
solvers called SPOOLES [4, 30]. Both SMOOTH and SPOOLES are written in C; we discuss SPOOLES

in Sect. 9. George and Liu have implemented object-oriented user interfaces in Fortran90 and C++ for the

SPARSPAK library, and they have discussed their design goals in [17].

We are interested in object-oriented design of direct solvers since we need to perform experiments to

quickly prototype new algorithms that we design. We are also interested in extending our work to parallel

and out-of-core computations, and to a variety of computer architectures. While several direct solvers are

currently available, most of them are designed as "black boxes"—difficult to understand and adapt to new
situations. We needed a robust and extensible platform to serve as a baseline, and a framework to support

inclusion of new components as they are developed.

•Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0162. Email: dobrian8cs.odu.edu.
tDepartment of Computer Science, Old Dominion University, Norfolk, VA 23529-0162. Email: kumfert8cs.odu.edu.
^Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0162; and ICASE, NASA Langley Research

Center, Hampton, VA 23681-2199. Email: {pothen8cs.odu.edu, pothenfiicase.edu}. This work was supported by National

Science Foundation grants CCR-9412698 and DMS-9807172, by a GAANN fellowship from the Department of Education, and

by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 whiPle third author was in

residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center,

Hampton, VA 23681-2199.

D t^XSI 11

FIG. 2.1. A "black box" formulation of a sparse direct solver.

This project is the result of a balanced approach between sound software design and the "need for

speed." We achieve the second goal by carefully implementing highly efficient algorithms. Our success here

can be quantifiably measured by comparison to other implementations, both in terms of quality of the results

and the amount of resources needed to compute it. Determining how well we achieve the first goal of good

software design is much more subjective. In this arena, we argue on the grounds of usability, flexibility, and

extensibility.

The research presented here tells the story of two separate but inter-related projects, parts of two PhD

theses. The first project, Spmdfe, is a library of sparse matrix ordering algorithms including a variety of

fill-reducing orderings. The second project, 0&U0, handles the remaining steps in solving a linear system of

equations: matrix factorization and triangular solves. During development, ideas developed in one project

were incorporated into the other when they were found to be suitable. As the projects matured, several design

methodologies and programming techniques proved themselves useful twice. Currently the two projects have

converged on most major design issues, though they are still maintained separately.

We present the work as a whole and concentrate on the commonalities of object-oriented design that

have proved themselves in both projects. As this is ongoing research, we also present some equally good

ideas that may not apply to both the ordering and solver codes, or that have not been incorporated into

both yet. We find this convergence of design strategies somewhat surprising and most beneficial.

We explain the algorithms we chose and discuss the key features of the implementations. We also

show the important tradeoffs that were made; often sacrificing more elegant applications of object-oriented

techniques for very real improvements in efficiency. We include some missteps that were made in the course

of our research and the lessons learned from the endeavor. Our code is written in C++.

Background information about direct methods is presented in Sect. 2. We identify the primary goals

for our implementations in Sect. 3. The actual design of the software is presented in Sect. 4, with special

emphasis on the ordering code in Sect. 5 and the factorization code in Sect. 6. We present the results of our

software in Sect. 7. Finally, we discuss the lessons learned in course of our research in Sect. 9.

2. Background. The direct solution of a sparse symmetric linear system of equations Ax = b can be

described in three lines, corresponding to the three main computational steps: order, factor and solve,

(2.1)

(2.2)

(2.3)

Pi = ordert),

(L,D,P2)= factor^, Pi),

x = solve(L, D,P2,b).

Here A is a sparse, symmetric, positive definite or indefinite matrix; L is its lower triangular factor, and D

is its (block) diagonal factor, satisfying A = LDLT; Px and P2 are permutation matrices; 6 is the known

right-hand-side vector; and x is an unknown solution vector. We illustrate this three-step "black box" scheme

in Fig. 2.1.

Of the three steps, computing the factorization is usually the most time consuming step. For the rest of

this section, we will discuss the significance of these three computational steps and their interplay.

2.1. Fill and the Elimination Forest. The first step of the factorization of a symmetric positive

definite matrix A can be described by the equation

A = A0 =
on ax

aj Ai

1 0T \f an 0T \ / 1 If
h /„-i) \ 0 Ai J \ 0 /„-i

By multiplying the factors, we see that lx = (l/an)ai, and Ax = "A~[- anhl^. Hence the first column of

L (the subdiagonal elements) is obtained by dividing the corresponding elements of A by the first diagonal

element; and the matrix that remains to be factored, Ait is obtained by subtracting the term anhlj from

the corresponding submatrix of A. At the end of the first step, we have computed the first column (and

row) of the factors L and D. The remainder of the factorization can be computed recursively by applying

this elimination process to the first column of the submatrix that remains to be factored at each step.

Computing the factors of a symmetric indefinite matrix is a little more involved, since we have to

consider the elimination of two columns (and rows) at a step if the first diagonal element of the submatrix

to be factored is zero or small. We do not discuss the details of factoring an indefinite matrix here.

We observe from the equations above that the factor L has nonzero elements corresponding to all

subdiagonal nonzero positions in A; in addition, for j > i, if the ith and jth positions of h are nonzero,

then the (i, j) element of Ai is nonzero even when A has a zero element in that position. These additional

nonzeros introduced by the factorization are called fill elements. Fill increases both the storage needed for

the factors and the work required to compute them.

An example matrix is provided in Fig. 2.2 that shows non-zeros in original positions of A as "x" and

fill elements as "•". This example incurs two fill elements. As a column j of A is eliminated, multiples of

the jth column of L are subtracted from those columns k of A, where lkj is nonzero.

A graph model first introduced by Parter to model symmetric Gaussian elimination is useful in identifying

where fill takes place. The adjacency graph of the symmetric matrix, G = G(A), has n vertices corresponding

to the n columns of A labeled 1,2,..., n. An edge (i, j) joins vertices i and j in G if and only if ai4 is nonzero.

Since by symmetry, a^i is also nonzero, the graph is undirected. It is conventional to not draw the loops

(i, i) corresponding to the n nonzero diagonal elements a«.

The example in Fig. 2.2 illustrates the graph model of elimination. A sequence of elimination graphs,

Gk, represents the fill created in each step of the factorization. The initial elimination graph is the adjacency

graph of the matrix, G0 - G(A). At each step k, let vk be the vertex corresponding to the fcth column of Lk

to be eliminated. The elimination graph at the next step, Gk+i, is obtained by adding edges needed to make

all vertices adjacent to vk pairwise adjacent to each other, and then removing vk and all edges incident on

vk ■ The inserted edges are fill edges in the elimination graph. This process is repeated until all the vertices

are eliminated. We denote by F the filled matrix L + LT. The filled graph G(F) (the adjacency graph of

F) contains all the edges of G(A) together with the filled edges.

Step k Lk Gk

i xx
2 XX

X 3 XX
X «X
XXX 5 X
XX X«

1
2 XX

X 3 »XX
X • 4X

XXX 6 X
xx x«

3»XX
• 4X

XXXSX
XX Xi

X •

1
2

X 3
X »4

XXX
XX»

5X
Xi

XXX 5
xx»x[^

FIG. 2.2. Examples of factorization and fill. For each step k in the factorization, the nonzero structure of the factor Ly.

and the associated elimination graph Gjt are shown.

When a column j updates another column k during the elimination, dependencies are created between
the columns j and k. An important data structure that captures these dependencies is an elimination tree, or

more generally an elimination forest. The reader unfamiliar with elimination trees will find a comprehensive

survey in Liu [24]. The critical detail for our purposes is that elimination forests minimally represent the

dependencies in the factorization. Each column in the matrix is represented as a node in the forest. The

parent of a column j is the smallest row index of a subdiagonal nonzero element (the first subdiagonal

nonzero) in column j. Note that the definition of the elimination forest employs the factor and not the

original matrix A. In our example, the parent of column three is four, and £4,3 is a fill element.

An important concept that permits us to perform block operations in the factorization is that of a

supernode. Supernodes are groups of adjacent vertices that have identical higher numbered neighbors in the
filled graph G(F). We group vertices into supernodes using the elimination forest; a supernode consists of a

set of vertices that (1) forms a path in elimination forest, and (2) have the same higher numbered neighbors.
In our example, the reader can verify that vertices 3 and 4, and vertices 5 and 6 form supernodes. This

grouping of vertices into supernodes can then be used to define a supernodal elimination forest. In the filled

matrix F, a supernode corresponds to a group of columns with a nested nonzero structure in the lower

triangle.
Although we defined the elimination forest in terms of the factor L, in practice it is computed before

the factorization. It turns out that efficient algorithms can be designed to compute the elimination forest
from the given matrix A and an ordering Pi in time almost linear in the number of nonzeros in A. The
elimination forest is then used in symbolic factorization algorithms to predict where fill occurs in the factor.

Fill entries can only occur between a node in the elimination forest and its ancestors.

The elimination forest corresponding to the example in Fig. 2.2 is a single tree shown in Fig. 2.3. It can

FIG. 2.3. Examples of elimination forests, (a) An elimination forest of the example in Fig. 2.2. (b) The corresponding

supernodal elimination forest, which is used in supernodal multifrontal factorization.

be shown that any postordering of the elimination forest leaves the fill unchanged.

2.2. Factorization. The example in Fig. 2.2 illustrates a right-looking factorization, where updates

from the current column being eliminated are propagated immediately to the submatrix on the right. In a

left-looking factorization, the updates are not applied right away; instead, before a column k is eliminated,

all updates from previous columns of L are applied together to column k of A. Another approach is a
multifrontal factorization, in which the updates are propagated from a descendant column j to an ancestor

column k via all intermediate vertices on the elimination tree path from j to k.

Ö6U0 currently includes a multifrontal factorization code. In the multifrontal method, we view the sparse

matrix as a collection of submatrices, each of which is dense. Each submatrix is partially factored; the

factored columns are stored in the factor L, while the updates are propagated to the parent of the submatrix

in the elimination forest. The multifrontal method and supernodal left-looking algorithms are suited to

modern RISC architectures since the regular computations in the dense submatrices make better use of

cache and implicit indexing.
We provide a high-level description of the multifrontal algorithm here, and the implementation details

will be presented in Sect. 6. The multifrontal factorization is computed in post-order on the elimination

forest. The algorithm creates a dense submatrix called a frontal matrix for each supernode. A frontal matrix

is a symmetric dense matrix with columns and rows corresponding to the groups of columns to be eliminated
and all the rows in which these columns have nonzeros. The frontal matrix is partially factored corresponding

to the columns to be eliminated. The remainder of the frontal matrix forms a dense update matrix that will

be stacked. The factored columns are copied into the sparse factor L. When all the children of a parent

vertex in the elimination forest have been eliminated, the parent retrieves the update matrices of its children
from the stack, and adds them into its own frontal matrix. The parent then has been "fully assembled"; it

can then partially factor its frontal matrix, and propagate an update matrix to its parent in the elimination

forest.
We illustrate the multifrontal factorization process in Fig. 2.4. At each step, k, we assemble the frontal

matrix, Fk, by adding the entries in the kth rows and columns of A and any update matrices, Uk- These
contributions to Fk vary in size, so special attention must be paid to indices; hence we call this operation

scatter-add, and denote it by "e". The frontal matrices then factor all columns that are "fully assembled."

This looks identical to how Lk was generated in Fig. 2.2, except that here, the frontal and update matrices

are dense, not sparse. After the appropriate columns are factored from Fk, it is split into an update matrix

Uk and a factored column C/t, which is scatter-added to the sparse factor Lk-

2.3. Ordering. The order in which the factorization takes place can change the structure of the elim-

ination forest, and therefore greatly influences the amount of fill produced in the factorization. To control

Assemble

A(:,l)

A(:,2)

A(:,3:4)

A(:,5:6)

F* t/*=

1XX
X
X.

2 2XX
5X
6X

3 4 5 6

— 4
3»XX
• <x
XX
X

5 6
5[5~Xl

->

>m
5 6

S[5"Xl

5 6
5[5"R1

(done)

Ck

56

»KM

2
X 3
X 4

5
 6

1
2

X 3
X 4

X 5
X *

1
2

X 3
X •*

XXX
XX«

5
6

1
2

X 3
X »4

XXX 5
XX«X6

FIG. 2.4. Example of multifrontal factorization. For each step k in the factorization, the frontal matrix Fk is assembled

from the appropriate column(s) of A and any update matrices from the children of supernode k in the supernodal elimination
forest. The fully assembled columns are factored; the factor columns Ck are scatter-added to the sparse triangular factor L.

Corresponding to the remaining columns in the factor matrix, a new update matrix Uk is computed.

fill, the coefficient matrix is symmetrically permuted by rows and columns in attempts to reduce the stor-

age(memory) and work(flops) required for factorization. Given the example in Fig. 2.2, the elimination order

{2,6,1,3,4,5} produces only one fill element, instead of the two shown. This is the minimum amount of fill

for this example.
If A is indefinite, the initial permutation may have to be modified during factorization for numerical

stability. This detail is captured in Equation 2.2 and in Fig. 2.1 by the distinction between the two permu-
tations, Pi and P2. The first ordering, Pi, reduces fill and the second ordering, P2, is a modification of Pi

to preserve numerical stability. In general, any modification of Pi increases fill and, hence, the work and
storage required for factorization. If A is positive definite, Cholesky factorization is numerically stable for

any symmetric permutation of A.
Fill reduction is handled before the factorization step by ordering algorithms. Finding the elimination

order that produces the minimum amount of fill is a well-known NP-complete problem. The heuristics used to
compute fill-reducing orderings fall mainly into two classes: divide-and-conquer algorithms that recursively

partition the graph and prevent fill edges joining two vertices in different partitions; and greedy algorithms

that attempt to control fill in a local manner.
Spinöfe is a library of symmetric sparse matrix ordering algorithms — including most of the current

"bottom-up" fill-reducing orderings. Though Sjjind[e has native support for many matrix file formats, it does

not implement a full matrix class and relies entirely on the graph model. Therefore while we talked about
eliminating columns for the factorization, it is more natural to discuss eliminating vertices from the graph in

this context. These greedy approaches choose which vertex to eliminate next based on some approximation

of the fill its elimination will induce. An upper bound on the fill created by eliminating a vertex of degree
d is d(d - l)/2; hence in the minimum degree algorithm a vertex whose degree (or some related quantity) is

minimum is eliminated next.
Multiple Minimum Degree (MMD) is an enhancement of the minimum degree algorithm that eliminates

maximal independent sets of vertices at once to keep the cost of updating the graph low. Many more

enhancements are necessary to obtain a practically efficient implementation. A survey article by George and

TABLE 2.1
Some of the algorithms in the Minimum Priority family.

Abbreviation Algorithm Name

MMD Multiple Minimum Degree [23]

AMD Approximate Minimum Degree [1]

AMF Approximate Minimum Fill [29]

MMDF Modified Minimum Deficiency [26]

MMMD Modified Multiple Minimum Degree [26]

AMMF Approximate Minimum Mean Local Fill [28]

AMIND Approximate Minimum Increase in Neighbor Degree [28]

Liu [16] provides all of the details for MMD. There have been several contributions to the field since this

survey. A list of algorithms that we implement in our library and references are in Table2.1.

2.4. Further Information. This "breathless introduction" to sparse direct solvers is intended to help

the reader to understand the basic computational problems in this area. For readers who desire further

information, we recommend the following papers: the MMD ordering algorithm, [16]; the AMD ordering

algorithm, [1]; the multifrontal method, [25]; elimination trees, [24]; and symmetric indefinite solvers, [2].

The books [12, 15] were written earlier than these articles, nevertheless they would be helpful too.

3. Goals. Our design and implementation were guided by several principal goals we wanted to achieve.

We list them briefly here, and then discuss each one in detail.

• Managing Complexity

• Simplicity of Interface

• Flexibility

• Extensibility

• Safety

• Efficiency

3.1. Managing Complexity. Writing code for sparse direct solvers is a challenging task because the

design requires sophisticated data structures and algorithms. To manage such complexity, proper abstrac-

tions must be used. Some of the earlier solvers were written in Fortran77, which has very limited support for

abstraction. As a consequence, the computation is expressed in terms of the implementation. For example,

a sparse matrix is commonly represented as several arrays and the algorithms are a collection of subroutines

which read from and write to these arrays. Since there is no support for abstract data types in the language,

these subroutines tend to have long argument lists. Additionally, since Fortran77 lacks dynamic memory

allocation, all arrays are global, and are reused many times for different purposes. All these characteristics

make the code extremely difficult to understand. Some of the more recent codes are written in C, but they

tend to be influenced by the earlier codes in Fortran77. For instance, the collection of subroutines is often

the same.

In contrast to earlier codes, we wish to express the computation in terms of the mathematical formulation.

This means programming in terms of vectors, trees, matrices, and permutations. This is possible in C++

because the language supports abstraction through classes, inheritance, and polymorphism. By programming

at a higher level of abstraction, we are able to implement code faster and to relegate minute details to lower

layers of the abstraction.

3.2. Simplicity of Interface. Simplicity is also achieved by good abstraction, but in a different sense.

Whereas with complexity management we want to build layers of abstraction, here we focus on intuitive

components with a minimal interface. Recall that the computation is formulated in terms of sparse matrices,

vectors and permutations and in terms of algorithms like orderings, factorizations and triangular solves.

Accordingly, we provide abstractions for such entities. The code for a solver that uses our libraries becomes

then a simple driver that reads the inputs to the algorithms, runs the algorithms, and writes their outputs.

3.3. Flexibility. The key to achieving flexibility in our codes is decoupling. We distinguish between

data structures and algorithms, and design separate abstractions for structural entities such as sparse ma-

trices, permutations and vectors on one hand, and for ordering and factorization algorithms on the other

hand. One can and should expect to swap in different ordering or factorization objects in the solver in much
the same way that components in a stereo system can be swapped in and out. In addition, one has the

possibility of choosing the number of times different components are used. Ordering and factorization are

performed only once in a series of systems with the same coefficient matrix with different right hand sides

for example, while the triangular solves must be repeated for every system in the series. A similar situation

occurs with iterative refinement, where triangular solves must be repeated for a single run of the ordering

and factorization algorithms. It should also be possible to solve several systems of equations simultaneously,

and to have them at various stages of their solution process.

Swapping components happens not only with data structures and algorithms; more generally, we want

to swap smaller components within a larger one. For instance, factorization is composed of a couple of

distinct phases (symbolic and numerical). Solvers for positive definite and indefinite problems differ only in
the numerical part. To switch from a positive definite solver to an indefinite solver, we only have to swap
the components that perform the numerical factorization. By splitting a factorization algorithm in this way

we also provide the option of performing only the symbolic work for those who wish to experiment with the

symbolic factorization algorithms.
The design challenge here is that flexibility and simplicity are at odds with one another. The simplest

interface to a solver would be just a black box; one throws a coefficient matrix and a right hand side vector

in one end and produces the solution out the other end of the black box. While very easy to use, it would not

be flexible at all. On the other hand, a very flexible implementation can expose too many details, making

the learning curve steeper for users. In general, we provide multiple entry points to our code and let the

users decide which one is appropriate for their needs.

3.4. Extensibility. Whereas flexibility allows us to push different buttons and interchange components,

extensibility allows us to create new components and alter the effects of certain buttons. This software is

part of ongoing research and gets regularly tested, evaluated, and extended.

The best techniques we found for ensuring extensibility in our codes were to enforce decoupling and to

provide robust interfaces. These practices also encourage code reuse. In the following sections, we will show
an example of how two types of dense matrices in 06U0, frontal and update, are used in numerical factorization

and inherit characteristics from a dense matrix. We also present an example of how polymorphism is used

in the ordering algorithms of Spiwöle.
Extensibility is not an automatic feature of a program written in an object-oriented language. Rather,

it is a disciplined choice early in the design. In our implementations, we have very explicit points where the

code was designed to be extended. Our intent is to keep the package open to other ordering and factor-

ization algorithms. We are interested in extending these codes to add functionality to solve new problems

(unsymmetric factorizations, incomplete factorizations, etc.) and to enable the codes to run efficiently in

serial, parallel (with widely differing communication latencies), and out-of-core environments.

3.5. Safety. We are concerned with two major issues concerning safety: protecting the user from mak-

ing programming mistakes with components from our codes (compile-time errors), and providing meaningful

error handling when errors are detected at run-time. Earlier we argued that the simplicity of the interface

enhances the usability of the software, we add here that usability is further enhanced by safety.
Compile-time safety is heavily dependent on features of the programming language. Any strongly typed

language can adequately prevent users from putting square pegs in round holes. That is, we can prevent

users from passing a vector to a matrix argument.
Run-time errors are more difficult to handle. Structural entities such as sparse matrices and permutations

are inputs for factorization algorithms. When such an algorithm is run, it should first verify that the inputs

are valid, and second that the inputs correspond to each other.
The biggest difficulty about error handling is that while we, the library writers, know very well how

to detect the error conditions when they occur, we must leave it to the user of the library to determine

what action should be taken. Error handling is an important and all too often overlooked part of writing

applications of any significant size. Because we are writing a multi-language based application and provide

multiple interfaces (Fortran77, C, Matlab, C++) we immediately rejected using C++ exception handling.

The way in which errors are handled and reported in 06U0 and Spiwö(e differ slightly in the details,

but the strategies are similar. In both codes, the classes are self-aware, and are responsible for performing

diagnostics to confirm that they are in a valid state. Instances that are in invalid states are responsible for

being able to report, upon request, what errors were detected.

3.6. Efficiency. An efficient piece of software is one that makes judicious use of resources. To achieve

efficiency, data structures and algorithms must be implemented carefully. Previous direct solver packages
tend to be highly efficient, using compact data structures and algorithms that are intimately intertwined

in the code. Decoupling the data structures from the algorithms and requiring them to interact through

high-level interfaces can add significant computational overhead. Choosing robust and efficient interfaces

can be quite involved. The compromise between flexibility and efficiency is determined by these interfaces.

Consider the means by which an algorithmic object accesses the data stored in a structural object: e.g.,
a factorization operating on a sparse matrix. A rigorous object-oriented design requires full encapsulation

of the matrix, meaning that the factorization algorithm must not be aware of its internal representation.
In practice, sparse matrix algorithms must take advantage of the storage format as an essential optimiza-

tion. This is often done in object-oriented libraries like Diffpack and PETSc by "data-structure neutral"
programming (see [6] and [5] respectively). This is accomplished by providing an abstract base class for

a matrix or vector, and deriving concrete implementations for each data-layout: compressed sparse row,

compressed column major, AIJ (row index, column index, value) triples, blocked compressed sparse, etc.

Then each concrete derived class must implement its own basic linear algebra functions. Given t types of

matrices and n basic linear algebra subroutines for each, these libraries provide txn virtual functions.

Our goal is somewhat narrower: provide a solver that is as fast as any other solver written in any other
language, but is more usable, flexible, and extensible, because we use object-oriented design and advanced
programming paradigms. Our algorithms are more complicated than a matrix-vector multiply, and providing

a set of algorithms for each possible representation of the matrix is unreasonable. Even if we designed general

algorithms that operate on matrices regardless of their layout, we could not make any guarantees about their

performance. We are more concerned about adding new algorithms, not adding more matrix formats. Our

codes apply to general, sparse, symmetric matrices that must be laid out in a specific way for efficient

computations, and we provide tools to convert to this format. Specific formats are needed because we are

forced to make a tradeoff: weaken the encapsulation to increase the performance.

In terms of running time, it is also important to realize which components of the code are the most

expensive and to focus on efficiently implementing them. Usually, a sparse direct solver spends most of the

time in the factorization step. A triply nested loop performs the bulk of the computation. Although most

of the time is spent here, the code for the factorization represents just a tiny piece of the whole program.

The rest of the code does not account for much of the whole time but it is certainly more sophisticated than

this kernel. We use a layered approach, in which the focus is on software design in the higher layers and on

efficiency in the lower ones. To get the best speed, we use a C subset or Fortran77 code for kernels such as

the triply nested loop inside the factorization.

Finally, we restricted our use of some specific object-oriented features. For example, we avoid operator

overloading for matrices and vectors because this leads to the creation of several temporary objects and

unnecessary data movement1.

4. Design. This section tackles the major issues in designing our solver. We begin by explaining the

base classes in the inheritance hierarchy in Sect. 4.1. Then in Sect. 4.2, we discuss the specialization and

composition of our data structure and algorithm classes. We also discuss how we use iterators to get the

algorithms and data structures to interact in Sect. 4.3. The important problem of I/O and handling multiple

(often disparate) sparse matrix file formats is discussed in Sect. 4.4. Then we focus on implementation

details specific to each package. The discussion of Spmflfe details in Sect. 5 highlights extensibility in using

polymorphic fill reducing ordering algorithms. The corresponding section for 061(0 is Sect. 6.

4.1. Base Classes. We have organized most of our heavy-weight classes into a single inheritance tree.

The two main branches are DataStructure and Algorithm. Each matrix, permutation, and graph class

inherits from DataStructure a common set of state information, interfaces for validating its state, and (op-

tionally) resources to support persistent objects. Similarly classes that perform computational services such

as ordering and factorization are derived from the Algorithm class, which provides support for algorithmic

state information and the interface for running the algorithm. Both DataStructure and Algorithm are

derived from a common ancestor, the Object class shown in Fig. 4.1. Although this class has no physical

analogy, it does provide a suite of useful services to all its descendants such as error handling and instance

counting. Through inheritance from Object, every structural or algorithmic object remembers when the

most recent error occurred, if any. This error can be retrieved on demand and communicated to other

classes.

The DataStructure class shown in Fig. 4.2 implements the validity checking mechanism specific to all

structural objects. A structural object is usually initialized as invalid. After it is fully initialized, it must

be validated. Later it can be completely reset. Again, the methods for validation and resetting are pure

virtual, every structural class being required to implement its own behavior.

The Algorithm class shown in Fig. 4.3 handles the execution of algorithmic objects. Each algorithmic

object requires a certain amount of time for its execution. This information can be retrieved for later

use. The execution of any algorithmic object is triggered by the same interface, only the implementation is

specific. This requires the method for running algorithmic objects to be pure virtual.

JThe reader is invited to see Velduizen [31], which explains some solutions to this problem in detail.

10

class Object

{
protected:

Error error;

public:

Object0 {error = None;}

Error getError(void) const {return error;}

virtual void print(const char »description) const = 0;

Vü
FIG. 4.1. The Object Class.

class DataStructure: public Object >

{
protected:

bool valid;

public:

DataStructure() {valid = False;}

bool isValid(void) const {return valid;}

virtual void validate(void) = 0;

virtual void reset(void) = 0;

VI:
FIG. 4.2. The DataStructure class.

There are some distinctions between Spmöfe and 06U0 in their implementations. Both have forms of

object-persistence through the DataStructure class, though the exact mechanisms differ. Spindle defines a

wider variety of states for DataStructure classes to be in, and carries a related idea of state for the Algorithm

classes. In both packages, however, the non-trivial concrete classes are derived from this fundamental

hierarchy.

4.2. Algorithms and Data Structures. We have seen several structural classes such as Matrix,

Vector, Graph and Permutation. Instances of these classes are the inputs and outputs of algorithmic

objects that order, factor, and perform the triangular solves.

The ordering algorithms, for example, require only the Graph of a Matrix as input, although there are

additional options that advanced users could set. After the algorithm is run, the results could be queried. In

Spmdfe, all the fill-reducing ordering algorithms can produce either a Permutation or an EliminationForest

(or both) upon successful execution of the algorithm.

Ordering algorithms can enter an invalid state for several reasons. The input data could have been

invalid, the user could have attempted to run the algorithm without sufficient input information, a run-time

error might have been detected, or there might be a problem servicing the user's output request. In all these

cases, the instance of the ordering algorithm can be reset and reused with different input data.

Algorithms can also be composed to obtain more sophisticated algorithmic objects. The factorization

itself is made of several components, each derived from the Algorithm class; we provide details in Sect. 6.

11

class Algorithm: public Object

{
protected:

float runTime;

public:

Algorithm0 {runTime =0;}

float getRunTime(void) {return runTime;}

virtual void run(void) = 0;

V:
FIG. 4.3. The Algorithm class.

bool isAdjacent(const Graphfc g, int i, int j) const >

{
for(int k = g.adjHead[i] ; k < g.adjHead[i+l] ; ++k) {

if (g.adjList[k] == j) {

return true;

}

}
return false;

Vl
FIG. 4.4. A C-like function that directly accesses the data in Graph.

Having these subcomputations implemented separately is useful for many reasons. We subject each compo-

nent to unit testing and later combine them during integration testing. It also helps in code reuse, since the

factorization algorithms for positive definite matrices and indefinite matrices share several steps.

The derivation and composition of data structures is just as rich. Multifrontal factorization requires sev-

eral dense matrix types that are derived from a common DenseSymmetricMatrix: these are FrontalMatrix

and UpdateMatrix.

4.3. Iterators. Separating data structures from algorithms makes it necessary to create interfaces

between the modules. Inspired by the Standard Template Library (STL)—which also makes a distinction

between data structures and algorithms—we explored the paradigm of iterators for this purpose. We first

define the iterator construct, and then discuss how we used it. In later sections, we show examples where

the iterator paradigm was applied with much success (Sect. 6) and where they were misapplied and reduced

performance significantly (Sect. 9.2).

4.3.1. Definition of an Iterator. An iterator is a class that is closely associated with a particular

container (data structure) class. The iterator is usually a "friend" class of the container granting it privileged

access. Its purpose is to abstract away the implementational details of how individual items within the

container are stored.

Assume, for example, that the list of all edges in a Graph is in the array ad j List [] and that a second

array adjHead[] stores the beginning index into adjList[] for each vertex in the graph. Then to check if

vertex i is adjacent to vertex j we simply run through the arrays as in the piece of code in Fig. 4.4.

This design has a flaw, in that the function assumes the layout of data in the Graph class and accesses it

12

fhool isAdjacentC const Graphfc g, int i, int j) constS

{
for(Graph::adj.iterator it = g.adj.begin(i);

it != g.adj.end(i); ++it) {

if (*it == j) {

return true;

}
}
return false;

FIG. 4.5. A C+ + global function that uses an iterator to search Graph.

directly. Consider now a different approach where the Graph class creates an iterator. Conventionally, an it-

erator class mimics the functionality of a pointer accessing an array. The dereference operator (operator* ())

is overloaded to access the current item in the container, and the increment operator (operator++0) ad-

vances the iterator to the next item in the container. Rewriting our function above, as shown in Fig. 4.5,

we define Graph: :adj.begin(int) to create an iterator pointing to the beginning of the adjacency list of a

specified vertex and Graph: :adj_end(int) to return an iterator pointing to the end of the list2.

The benefit of this second approach is that the function isAdjacent no longer assumes any information

about how the data inside Graph is laid out. If it is indeed sequential as it was in the previous example, then

the iterator could be simply a pointer to an integer data type. However, if the adjacency lists are stored in a

different format, e.g., a red-black tree (for faster insertions and deletions), the iterator approach still applies

for accessing the adjacency lists, since it assumes a suitable iterator class has been provided.

4.3.2. Application of Iterators. Iterators provide a kind of "compile-time" polymorphism. They

allow a level of abstraction between the data structure and the algorithm, but the concrete implementation

is determined at compile time. This allows the compiler to inline function calls (often through several levels)

and get very good performance3.

There were a few difficulties in applying this technique to our problems. The most complicated aspect

was that all STL containers are one-dimensional constructs. Many of our data structures, such as matrices

and graphs, are two-dimensional. This was not a serious problem since we, as programmers, tend to linearize

things anyway. In the example of iterators before, for instance, we used the iterator to iterate over the set

of vertices adjacent to a particular vertex.

4.4. Input/Output. An important problem that we often run into is sharing problems with other

researchers. Whenever we agree to generate some solutions for a client (either academia or industry) we

often find that we must adapt our code to a new file format. Attempts to standardize sparse matrix file

formats do exist, most notably the Harwell-Boeing Format [9], and the Matrix Market format [7]. However,

we found it unreasonable to expect clients to restrict themselves to a small choice of formats. We found,

in fact, that understanding the nature of this problem and applying object-oriented techniques is a good

exercise in preparation for the harder problems ahead.

Perhaps the easiest way to handle sparse matrix I/O is to have a member function of the matrix class

2Actually, it points to one past the end—a standard C++ convention.
3C++ cannot inline virtual functions.

13

// Matrix.h ^

«include "MatrixFile.h"

class Matrix

{
public:

Matrix(MatrixFile«:);

//■••

};

»include "Matrix.h" >

class MatrixFile

{
public:

MatrixFile(Matrix*:);

VÜ

FIG. 4.6. A first design of the Matrix and Matrixfile classes.

«include "MatrixBase.h" N

class Matrix

: public MatrixBase

{
public:

MatrixC MatrixBase*:);

//■••

«include "MatrixBase.h"

class MatrixFile

: public MatrixBase

{
public:

MatrixFile(MatrixBase*:);

};

FIG. 4.7. The Matrix and Matrixfile classes derived from a MatrixBase class.

to write a particular format and another to read. This is a simple solution, but it has a scalability problem.
First, as the number of formats increase, the number of member functions grows and the matrix class becomes

more and more cumbersome. Second, if separate matrix classes are needed then all of the I/O functions

must be replicated.

4.4.1. The Chicken and Egg Problem. One could reasonably create separate Matrix and MatrixFile

classes. The immediate problem with this design is determining which begets which. One would expect to

read a matrix from a file, but it also makes sense to generate a matrix and want to save it in a particular

format as shown in Fig. 4.6.
Such a design induces a cyclic dependency between the two objects, which is bad because such depen-

dencies can dramatically affect the cost of maintaining code, especially if there are concrete classes inheriting
from the cyclic dependency [21, pg. 224]. This is exactly the case here, since the intention is to abstract

away the differences between different file formats.
A solution is to escalate the commonality between the two classes. This has the advantage that the

dependencies are made acyclic, the downside is that an additional class that has no physical counterpart

is introduced for purely "software design" reasons. We will call this class MatrixBase, which is the direct

ancestor of both the Matrix and MatrixFile classes. This second design in shown in Fig. 4.7.
Now we can derive various matrix file formats from the MatrixFile class, independent of the internal

computer representation of the Matrix class. We will show later that the benefits compound when considering

matrix to graph and graph to matrix conversions.

4.4.2. Navigating Layers of Abstraction. It is important to understand that abstractions involved

around the construct we call a "matrix" come from different levels and have different purposes. To define

14

a class Matrix and possibly many subclasses, care must be taken to capture the abstraction correctly. It is

hard to give a formula for designing a set of classes to implement an abstract concept. However, when the

abstraction is captured just right, using it in the code is natural and intuitive. Often we have found that

good designs open new possibilities that we had not considered.

For the matrix object, we have identified at least two dimensions of abstraction that are essentially

independent, one from the mathematical point of view, one from computer science. Along the first dimension,

the mathematical one, a matrix can be sparse, dense, banded, triangular, symmetric, rectangular, real or

complex, rank-deficient or full-rank, etc. From a mathematical point of view, all of these words describe

properties of the matrix.

From a computer science point of view, there are different ways that these two-dimensional constructs

are mapped out into computer memory, which is essentially one-dimensional. Primarily, matrix elements

must be listed in either row-major or column-major order, though diagonal storage schemes have been used.

For sparse matrices, indices can start counting from zero or one. Layout is further complicated by blocking,

graph compression, etc.

The critical question is: in all the specifications of matrix listed above, which are specializations of a

matrix and which are attributes? The answer to this question determines which concepts are implemented

by subclassing and which are implemented as fields inside the class.

The answer also depends on how the class(es) will be used. Rarely will a programmer find a need to

implement separate classes for full-rank and rank-deficient matrices, but it is not obvious that a programmer

must implement sparse and dense matrices as separate classes either. Matlab uses the same structure for

sparse and dense matrices and allows conversion between the two. On the other hand, PETSc has both

sparse and dense matrices subclassed from their abstract Mat base class.

A third dimension of complexity comes from matrix file formats, which can be either a text or binary

file, and more generally, a pipe, socket connection, or other forms of I/O streams.

4.4.3. Final Layout. Our major concern was to have a flexible extensible system for getting matrices

in many different formats into our program at runtime. We discuss in this section how we finally organized

our solution. The inheritance hierarchy of the subsystem is shown in Fig. 4.8.

First we made non-abstract base classes GraphBase and MatrixBase which define a general layout for the

data. From these, we derive Graph and Matrix classes that provide the public accessor/mutator functions;

each class provides constructors from both GraphBase and MatrixBase. Furthermore, Graph and Matrix

classes also inherit from the DataStructure class, which gives them generic data structure state, error

reporting functionality, etc. In this way both can construct from each other without any cyclic dependency.

The final important piece before fitting together the entire puzzle is a DataStream class. This abstract

base class has no ancestors. It does all of its I/O using the C style FILE pointers. We chose this C-style of

I/O because, although it lacks the type-safety of C++ style iostream, it does allow us to do I/O through

files, pipes, and sockets. This functionality is (unfortunately) not part of the standard C++ library.

If we try to open a file with a ".gz" suffix, the file object inherits from the DataStream class the

functionality to open a FILE pointer that is in fact a pipe to the output of gunzip4. The DataStream class

is therefore responsible for opening and closing the file, uncompressing if necessary, opening or closing the

pipe or the socket, etc.; but it is an abstract class because it does not know what to do with the FILE once

it is initialized. This class also provides the error handling services that are typical of file I/O.

4The ".gz" suffix indicates a file that is compressed with the GNU zip utility (gzip) and can be uncompressed by its

complement, gunzip.

15

DataStream
FILE * fp;
open(const char * command, const char * mode);
virtual read(FILE *fp)=0;
virtual v>rite(FILE *fp)=0;

[Object)

DataStructure

Ci
(l

MatrixBase
int nrows;
int ncols;
double * data
int * col_ptr;
int * row idx;

MatrixMarketFormat

MatlabFormat

HarwellBoeingFormat
HarweIIBoeingFormat(GraphBase& gb);
HarweIIBoeingFormat(MatrixBase& mb);
virtual read(FILE * fp);
virtual write(FILE * fp);

Matrix
Matrix(GraphBase& gb);
Matrix(MatrixBase& mb):

GraphBase
int nvtxs;
int * vtxweight;
int * edgeweight;
int * adj_head;
int * adj_list;

UserDefinedFormat

ChacoFormat
ChacoFormat(GraphBase& gb);
ChacoFormat(MatrixBase& mb);
virtual read(FILE * fp);
virtual write(FILE * fp); ;

Graph
Graph(GraphBase& gb);
Graph(MatrixBase& mb);

FIG. 4.8. A fragment of the inheritance hierarchy highlighting how multiple file formats are implemented and extended. To

add an additional format, create a class that inherits from DataStream and one of GraphBase or MatrixBase. Then implement

the two pure virtual methods inherited from DataStream.

To understand how all these partial classes come together to do I/O for a sparse matrix format, consider

adding a new format to the library, a Matrix-Market file. To be able to read this format, we create a class

MatrixMarketFile that inherits from MatrixBase and DataStream. This new class needs to implement two

constructors based on MatrixBase or GraphBase and two virtual functions: read(FILE *) and write (

FILE *) (in practice, it also implements many more accessor/modifier methods specific to the Matrix-

Market format). Now we can read a Matrix-Market file, and create instances of either Graph or Matrix (or

any other class that uses a MatrixBase in its constructor). Furthermore, from any class that inherits from

MatrixBase or GraphBase we can write the object in Matrix-Market format. A graph-based file format, for

instance Chaco [18], can be created using a similar inheritance hierarchy based on GraphBase.

5. Ordering Specifics. SjJMöfe is a C++ library of sparse matrix ordering algorithms for reducing

bandwidth, envelope, wavefront, or fill. We had earlier developed new envelope and wavefront reducing

algorithms [19], but since they were implemented in C, we faced problems with complexity, scaling, and

extensibility of the code. This motivated us to create Spinöfe. Although Spinöfe has several stand-alone

16

node reachable set degree

1 67 2

2 6 1

3 N/A

4 7 1

5 6 9 13 12 4

6 1 2 5 7 9 11 12 13 8

7 1 46 9 11 13 6

8 N/A

9 5 6 7 11 12 13 6

10 N/A

11 6 79 13 4

12 5 6 9 13 4

13 5 6 7 9 11 12 14 15 16 9

14 13 1

15 13 1

16 13 1

FIG. 5.1. An example of a quotient graph. The nodes are represented as circles, and enodes as boxes. The reachable set
of a node v is the union of the set of nodes adjacent to v, and the set of all nodes adjacent to enodes adjacent to v. The degree
of a node in a quotient graph is the size of its reachable set, and not the cardinality of its adjacency set, as is usual in graphs.

drivers, it is intended to be used as a library, and is distributed with C, C++, Matlab, and PETSc calling

interfaces5.
In this section, we provide some examples of major concrete classes in Spinöle, one from the DataStructure

and one from the Algorithm branches of the inheritance hierarchy. In Sect. 5.1 we introduce the QuotientGraph

class and describe its use. It will be revisited again in Sect. 9.2 when we discuss lessons learned. We also

discuss the framework for implementing a family of algorithms in Sect. 5.2. We believe that this section
provides a compelling example for how flexibility and extensibility can be achieved by proper design.

5.1. The Quotient Graph. A quotient graph [14] is an implicit representation of the sequence of

elimination graphs obtained during the factorization process. The quotient graph represents (implicitly) the

elimination graph at any stage in the same amount of space as the original graph, even though the ordering

algorithm creates new fill edges in the elimination graph. Thus the quotient graph is immune to the effects of
fill; the price to be paid for this property is greater searching costs to determine from the quotient graph the

adjacency set of a node in the elimination graph. The space efficiency helps avoid dynamic storage allocation

for the ordering step, since the total fill is known only at the end of this step.

The quotient graph is an augmented graph with two distinct types of vertices: nodes and enodes. Nodes

represent uneliminated nodes from the original graph, suitably grouped together; enodes represent groups

of eliminated nodes that are adjacent to each other. The edges in a quotient graph join either one node to

another, or a node to an enode. There are no edges connecting two enodes6.

The set of nodes adjacent to a node v in an elimination graph can be computed from the quotient graph

by computing the nodes that can be reached from v in the latter graph. This reachable set of v includes

two groups of nodes: First, the set of all nodes adjacent to v in the quotient graph; second, the union of the

'Fortran interfaces are also possible, but have not been implemented yet.
6Conceptually, an edge could connect two enodes in some intermediate state, but it would immediately be removed and the

enodes would be merged into one.

17

PriorityStrategy

prioritize()=0

ZX\
ApproxMinimumDegrec

prioritize();

UserDefined

prioritize();

FIG. 5.2. The Strategy Pattern.

nodes that are adjacent to the enodes adjacent to v. The union of these two sets is the reachable set of v

in the quotient graph, and hence the adjacency set of v in the elimination graph. Fig. 5.1 shows a sample

quotient graph and the reachable sets and degrees for each node.

5.2. Polymorphic Fill Reducing Orderings. One example where object-oriented implementation

had substantial payoffs in terms of extensibility was in our ability to construct polymorphic fill reducing

orderings. Recall from Table 2.1 that there are several different variants of these algorithms, many of which
are quite recent. Currently there is no known library containing all of these algorithms, besides Spindle.

While some of these heuristics are related, others—particularly MMD and AMD—are radically different

in the ways priorities are computed, the underlying graph is updated, and in the allowed and disallowed

optimizations. A fundamental distinction is that MMD allows multiple elimination, while AMD is restricted

to single elimination. This means that MMD allows many vertices to be eliminated between each graph

update (but the eliminated nodes have to belong to non-adjacent supernodes). AMD does not require as

much work per graph update, but the graph needs to be updated after every node is eliminated; this is a

consequence of the way in which priorities are approximated in AMD.
Polymorphism was achieved using the Strategy Pattern [13, pg. 315]. We created a complete framework

for the entire family of minimum-degree like algorithms but deferred the ability to compute the (exact or

approximate) degree of a node to a separate class in its own mini hierarchy. See Fig. 5.2 for the basic layout.

In this arrangement, the class MinimumPriorityEngine (which we will call Engine for short) is an

algorithm that repeatedly selects a node of minimum priority from the given graph, eliminates it from the

graph, and then updates the graph by adding appropriate fill edges when necessary. The catch is that it has

no idea how to determine the priority of the vertices. It must rely on a PriorityStrategy class (Strategy

for short), or more specifically, a specialized descendant of the Strategy.
This important design pattern offers several benefits. It provides a more efficient and more extensible

alternative to long chains of conditional statements for selecting desired behavior. It allows new strategies
to be implemented without changing the implementation of the engine. It is also more attractive than

overriding a member function of the engine class directly because of the engine's overall complexity. This

design also forces a separation between the work that is done and how the quality of work is measured.

There are potential drawbacks for using this pattern in general. The first drawback is that there is an

increased number of classes in the library, one for each ordering algorithm. This is not a major concern,

though users should be insulated from this by reasonable defaults being provided. A second drawback is the
communication overhead. The calling interface must be identical for all the strategies, though individual

types may not need all the information provided. A third drawback is the potential algorithmic overhead

in decoupling engine and strategy. In our case, the engine could query the strategy once for each vertex

that needs to be evaluated, though the virtual-function call overhead would become high. Alternatively, the

18

MinPriorityEngine

done = isAllEliminated()

QuotientSraph BucketSorter MinPriorityStrategy

i
SINGLE or MULTIPLE ELIMINATION

updatc(&recomputeNodes, AmergedNodet 6
remove{ mergedNodes)

prioritize(recomputeNodes)

*o

Cr

T

adjbeginf vtx)
adj_end(vtx)

nscrt(vtx , priority;

r
FIG. 5.3. Interaction of the classes in the ordering step.

engine might request all unelirninated nodes in the current quotient graph to be re-prioritized after each

node is eliminated. This may result in too much work being done inside the strategy. Fortunately, in all

these algorithms the only nodes whose priorities change are the ones adjacent to the most recently eliminated

node. The QuotientGraph keeps track of this information.

For the Engine to work, a class must be derived from the Strategy abstract base class, and this class

must override the pure virtual member function computePr iority. The Engine is responsible for maintaining

the graph and a priority queue of vertices. It selects a vertex of minimum priority, removes it from the queue,

and eliminates it from the graph. The priority of all the neighbors of the most recently eliminated node is

changed, so they too are removed from the priority queue for the time being. When there is no longer any

vertex in the priority queue with the same priority as the first vertex eliminated at this stage, a maximal

independent set of minimum priority nodes have been eliminated. The Engine updates the graph and gives a

list of all vertices adjacent to newly eliminated ones to the MMDStrategy class. This class, in turn, computes

the new priorities of these vertices and inserts them into the priority queue.

To make this setup efficient, we use a BucketSorter class to implement the priority queue and a

QuotientGraph class to implement the series of graphs during elimination. The interaction of these four

major objects is shown in Fig. 5.3. We hide the details of how single elimination and multiple elimination

are handled. This too is determined by a simple query to the Strategy class. When the QuotientGraph

is updated, it performs various types of compressions which may remove additional vertices or modify the

list of vertices that need their priority recomputed. When it calls the Strategy to compute the priorities,

it provides a const reference to the QuotientGraph for it to explore the datastructure without fear of

side-effects, and the BucketSorter to insert the vertices in.

To implement all of the ordering algorithms in Table 2.1 efficiently, we had to augment the Strategy

Pattern. The QuotientGraph is required to behave in slightly different ways when updating for single

elimination algorithms (e.g., AMD) and multiple elimination algorithms (e.g., MMD). Thus the Engine

must query the Strategy what type is required and set the QuotientGraph to behave accordingly. This is

handled in the first phase of the run() function that is overridden from its parent Algorithm class.

6. Factorization Specifics. 061(0 currently focuses on the factorization and triangular solve steps,

and imports orderings from other libraries such as Spmöfe. Here we restrict our discussion to the factoriza-

19

tion algorithms, which are the most complex. All abstractions associated with the factorization are built

incrementally, beginning from the base classes described in Sect. 4.

6.1. The First Structural and Algorithmic Classes. The initial abstractions result naturally from

the high level formulation of the factorization, illustrated in Fig. 2.1. We need to describe coefficient matrix

objects, permutation objects and factor objects, and for these 06U0 provides the following three classes:

SparseSymmMatrix, Permutation, and SparseLwTrMatrix.

A coefficient matrix is described by the SparseSymmMatrix class. Internally, the matrix data is stored

using the compressed column format: for each column there is a set of numerical values and a set of row

indices that correspond to these values. In addition, an index array contains the location of the first element

in each column in the value and row index arrays. The Permutation class describes permutations by storing

two maps: a map from old to new indices and another from new to old indices. The SparseLwTrMatrix

class describes both the triangular and diagonal factors. While this abstraction may look awkward, it is

done with a specific intent. Note that the diagonal elements of L do not have to be stored explicitly, which

allows the elements of D to replace them. Since the factors are usually manipulated together, this unified

implementation is more efficient. The storage of the data is similar to the one used in the SparseSymmMatrix

class, with the difference that row indices are compressed according to the supernodal structure of the factors.

06U0 provides a separate abstraction for each factorization algorithm. Currently, it supports only multi-

frontal factorizations, for both symmetric positive definite and indefinite problems. In the indefinite case we

make use of the Duff-Reid [11] pivoting strategy now, but we plan to extend the library with other strate-

gies too, for example Aschcraft-Grimes-Lewis [2]. Pivoting strategies are discussed in detail in the latter

paper. Also, the library can be easily extended with other factorization algorithms, such as the left-looking

algorithm. The current factorization classes are PosDef MultFrtFactor, and Indef MultFrtFactor.

6.2. Connecting Data Structures and Algorithms. Data structures are inputs to and outputs

for algorithms. We associate data structures with algorithms by using pointers to structural objects inside

algorithmic classes. The inputs to a factorization algorithm are the coefficient matrix and the sparsity

preserving permutation. The outputs are the factors and the permutation that provides stability. We make

the choice of composing the two permutations, so the output permutation replaces the input permutation

after the factorization algorithm is run. Fig. 6.1 describes the connection between a factorization algorithm

and its input and output data structures.

Inputs and outputs can be associated with an algorithm through the constructor of the algorithm class,

or at a later stage (not shown in Fig. 6.1). This provides the flexibility to change them at any time.

6.3. The Factorization in More Depth. More abstractions are needed deeper inside the factoriza-

tion algorithms. First, there is the elimination forest, which guides both the symbolic and the numerical

phases of the factorization. The forest stores parent, child and sibling pointers for every node. This way

it can be traversed both bottom-up and top-down. The symbolic and numerical factorization proceed

bottom-up (postorder) but require child and sibling information. The parent, child and sibling pointers

are stored for both nodal and supernodal versions of the forest. There are also three major algorithms

inside the factorization: algorithms to compute the elimination forest, the symbolic factorization, and the

numerical factorization. Positive definite and indefinite solvers differ only in the numerical part, so separate

numerical factorization abstractions are needed. Thus we have the classes: ElimForest, CompElimForest,

PosDefMultFrtNumFactor, IndefMultFrtNumFactor and SymFactor.

A factorization class is based on these new classes. To define it we use composition, as shown in Fig. 6.2.

20

class PosDefMultFrtFactor: public Algorithm

{
private:

const class SparseSymmMatrix *a;

class Permutation *p;

class SparseLwTrMatrix *1;

// ...

public:

PosDefMultFrtFactor(const class SparseSymmMatrix,

class Permutation,

class SparseLwTrMatrix);

//

Vi
FIG. 6.1. An algorithm connects to its inputs and outputs by means of pointers to the corresponding data structures.

class PosDefMultFrtFactor: public Algorithm

{
private:

// ...
ElimForest f;

CompElimForest elm;

SymFactor sym;

PosDefMultFrtNumFactor num;

public:

// ...

Vii
FIG. 6.2. Composition within a multifrontal factorization algorithm.

By splitting the factorization algorithm into its three algorithmic components, we give the user the

possibility of running these components individually. This flexibility is needed in many situations. When

some types of nonlinear equations are solved by successive linearization, the zero-nonzero structures remain

constant while the numerical values change from one iteration to the next. In this case, only the numerical

factorization algorithm needs to be run at each iteration. This splitting also aids code reuse since the

algorithms for computing the elimination forest and the symbolic factorization are implemented only once

but are used by both positive definite and indefinite factorizations.

Three more abstractions are required within the numerical factorization. They correspond to the frontal

and update matrices and to the update stack. Since both frontal and update matrices are dense we first

provide a general abstraction for dense matrices. In addition to the numerical values, frontal and update

matrices must also store two types of maps: the map from local to global indices and vice versa. The

corresponding classes are DenseSymmMatrix, FrontalMatrix, UpdateMatrix, and UpdateStack.

Composition is used again within the numerical factorization algorithms, as shown in Fig. 6.3. Also, the

update stack is composed of update matrices.

Figs. 6.4 and 6.5 summarize our discussion above. They provide a high level description of the 061(0 classes

associated with the factorization from two perspectives, showing inheritance and composition relationships.

21

class PosDefMultFrtNumFactor: public Algorithm

{
private:

// ...

FrontalBatrix fm;

UpdateMatrix urn;

UpdateStack u;

public:

//

};

FIG. 6.3. Composition within a multifrontal numerical factorization algorithm.

T
[DataStructure 1

[SparseSymmMatrix) [Permutation]
1

[SparseLwTrMatrix)

[ElimForest) [DenseSymmMatrix] (UpdateStackJ

I
[FrontalMatrix] [UpdateMatrix]

[CompElimForest]

[Algorithm)

[SymFactor)

[PosPefMultFrtNumFactor] [IndefMultFrtNumFactör)

[PosDefMultFrtFactor] [IndefMultFrtFactor]

FIG. 6.4. Inheritance relationships.

[ElimForest)

[PosDefMultFrtFactor)

[CompElimForest)

[PosPefMultFrtNumFactor)

7 r l
[FrontalMatrix] [UpdateMatrixMUpdateStack)

1_1—1-
[SymFactor) [IndefMultFrtNumFactör)

ill
[IndefMultFrtFactor)

FIG. 6.5. Composition relationships.

22

6.4. The Interaction between Data Structures and Algorithms. Because of the conflict be-

tween high level abstractions and efficiency, the interaction between data structures and algorithms is a

major concern in 061(0. We have made several tradeoffs here rather than adopt a uniform solution in all

such situations. There are cases when efficient interfaces make algorithmic classes aware of the internal

representation of structural classes. In other situations we were able to achieve more abstraction. The code

in Fig. 6.6, which is the kernel of a numerical factorization algorithm, is representative from this perspective.

The loop traverses the supernodal elimination forest in postorder using iterators. For each supernode the

frontal matrix assembles original numerical values from the coefficient matrix; for a non-leaf supernode,

update matrices from the update stack are also assembled into the frontal matrix. Partial factorization is

then performed on the frontal matrix, eliminated columns are saved in the factors, and the update matrix

is pushed onto the stack.

Note that most of the execution time is spent inside the partial factorization of the frontal matrices.

Accordingly, we had to make sure that this operation is performed efficiently. The factorization is a triply

nested loop which needs to be carefully written. To make sure that we get the best performance, we have

written it in Fortran77 in addition to C++, since Fortran77 compilers tend to generate more efficient code

than C++ compilers.

In terms of efficiency, note also that we perform storage allocation for the update matrices only once.

We actually allocate a big chunk of memory for the update stack and the update matrices use that storage.

Of course, in the indefinite case we have to increase the size of the stack when needed.

7. Results. We report results obtained on a Sun Ultra I (167 MHz) workstation with 128 MB of main

memory and 512 KB of cache, running Solaris 2.5. We compiled the C++ source files with g++ 2.8.1 (-0)

and the Fortran77 source files with f77 4.2 (-fast).

We use the two sets of problems listed in Table 7.1. We read only the sparsity pattern for the first set

and generate numerical values for the nonzero elements (both real and complex) that make the coefficient

matrices positive definite. The problems in the second set are indefinite and we read the original numerical

values also. To compare ordering algorithms we use the first set of problems. Table 7.2 shows ordering and

numerical factorization times for several ordering algorithms available in Spindfe, for real-valued coefficient

matrices.

We focus next on one particular ordering, MMD, and look at several other properties. Table 7.3 lists, for

the first set of problems, the number of off-diagonal nonzero entries in the factors, the numerical factorization

performance and the backward error for both real and complex-valued problems.

We focus next on one particular ordering, MMD, and look at several other properties. Table 7.3 lists, for

the first set of problems, the number of off-diagonal nonzero entries in the factors, the numerical factorization

performance and the backward error for both real and complex-valued problems. Note that performance

results must be interpreted with care for sparse matrix computations, since an ordering that increases

arithmetic work tends to increase performance as well. Thus one can achieve a higher performance by

not preordering the coefficient matrix by a fill-reducing ordering. Performance reports are useful when the

same ordering is used on different architectures, or as in this case, when looking at both real and complex

valued problems. Note that while the arithmetic work of complex-valued problems is roughly four times

the work in real-valued problems, performance improves only by a factor of two. The relative residual

(||(6 - AE)||/(||.A|| ||X||)) is computed to report backward error.

We switch now to the second set of problems. The first two groups contain real-valued structural

analysis and computational fluid dynamics (Stokes) problems. The third group contains Helmholtz problems,

23

for (ElimForest::constSupPostIter it = f->supPostBegin();

it != f->supPostEnd(); it++)

{
fm.init(*l, u, *it); // Initialize the frontal matrix.

fm.clearO; // Zero out all its values.

fm.assembleOrg(*a, *p); // Assemble original values.

for (int childCnt = it.getSupChildCnt();

childCnt > 0; childCnt—)

{
u.pop(um); // Pop the update matrix out of the stack.

fm.assembleUpd(um); // Assemble update values.

}

fm.factorO; // Perform partial factorization.

fm.saveElm(*l); // Save eliminated values.

um.init(fm, u, *it); // Initialize the update matrix.

fm.saveUpd(um); // Save update values.

V»
u.push(um); // Push the update matrix into the stack.

FIG. 6.6. The core of the multifrontal numerical factorization.

which are complex-valued. We order the coefficient matrices with MMD. Table 7.4 reports the number

of off-diagonal nonzero entries in the factors, numerical factorization time, performance during numerical

factorization, and the relative residual. Performance is still meaningful because we are interested in how it

changes for problems within the same category. It is expected to increase with increasing number of nonzeros
in the factor, and that is what we see for structures and the Stokes problem. Yet, performance decreases

with increasing size for the Helmholtz problems. This is likely caused by increased paging due to the larger
storage requirements of these problems relative to the available memory. We have observed a performance

increase with size for these problems on machines with more memory (such as a Sun Ultra 60 workstation
with 512 MB of memory and an IBM RS6000 workstation with 256 MB of memory). These results show

that for large problems an out-of-core solver is needed to obtain high performance.

There is a detail that needs to be explained here. The indefinite numerical factorization is based on a

sparsity/stability threshold which can take values between 0 and 1. A large threshold enhances stability but
also generates more swapping among the columns within each supernode, and more delaying of columns from

child to parent supernodes, which leads to reduced sparsity and performance. Sparsity can be preserved and

performance increased by lowering the threshold, but that decreases stability. The optimal choice depends

on the problem and on what tradeoffs are made. Stability can usually be reinstated from an unstable

factorization by few steps of iterative refinement. The results in Table 7.4 are obtained with a threshold

value of 0.1, and no iterative refinement.

24

TABLE 7.1

Test problems.

problem
order nonzeros in A

(subdiag.)
description

commanche 7,920 11,880 helicopter mesh

barth4 6,019 17,473 computational fluid dynamics

fordl 18,728 41,424 structural analysis

barth5 15,606 45,878 computational fluid dynamics

shuttle-eddy 10,429 46,585 model of space shuttle

ford2 100,196 222,246 structural analysis

tandem.vtx 18,454 117,448 helicopter mesh (tetrahedal)

pdslO 16,558 66,550 multicommodity flow

copterl 17,222 96,921 helicopter mesh

kenl3 28,632 66,586 multicommodity flow

tandem.dual 94,069 183,212 dual of helicopter mesh

onera.dual 85,567 166,817 dual of ONERA-M6 wing mesh

copter2 55,476 352,238 helicopter mesh

shell 4,815 100,631 model of venous stent

rev7a 9,176 143,586)j

nok 13,098 806,829)>
e20r0000 4,241 64,185 Driven cavity (Stokes flow)

e30r0000 9,661 149,416)>
e40r0000 17,281 270,367)i

helmholtzO 4,224 19,840 Helmholtz problem (acoustics)

helmholtzl 16,640 74,752 j)

helmholtz2 66,048 283,648)j

8. Comparisons with Existing Work. While we were completing this article,' we learned about

another object-oriented library called SPOOLES that contains direct solvers. SPOOLES (SParse Object-
oriented Linear Equations Solver) is a recent package developed by Cleve Ashcraft and colleagues at the

Boeing Company [30]. The code is publicly available without any licensing restrictions.

SPOOLES contains solvers for symmetric and unsymmetric systems of equations, and for least squares
problems. It supports pivoting for numerical stability; it has three ordering algorithms (minimum degree,

nested dissection, and multisection). Implementations on serial, shared parallel (threads), and distributed

memory parallel (message-passing using MPI) environments are included. It is a robust, well documented

package that is written in C using object-oriented techniques. We have learned much from its design and

from our continuing interactions with Cleve Ashcraft.

SPOOLES distinguishes between data classes, which can have some trivial functionality, and algorithm

classes, which handle the more sophisticated functionality. However, it does not enforce this paradigm

strictly, as it has ordering classes but only factorization and solve methods.

SPOOLES employs a left-looking factorization algorithm instead of the multifrontal algorithm that we

have implemented. However, with the functionality provided in SPOOLES, a multifrontal method can be
quickly implemented. It employs a one-dimensional mapping of the matrix onto processors during parallel

25

TABLE 7.2

Time (seconds) needed to compute some fill-reducing orderings from the MMD family (o), and to factor the reordered

matrices (f), for positive definite real-valued problems.

problem MMD MMMD AMD AMIND AMMF

commanche
o

f

0.28

0.24

0.33

0.22

0.55

0.25

0.55

0.23

0.58

0.26

barth4
0

f

0.23

0.27

0.25

0.28

0.33

0.28

0.33

0.28

0.35

0.27

fordl
0

f

0.89

0.89

1.07

0.84

1.31

0.91

1.38

0.95

1.44

0.95

ken 13
0

f

2.26

1.61

2.72

1.79

6.01

1.61

7.44

1.86

7.32

1.85

barth5
0

f

0.93

0.93

1.06

0.83

1.17

0.94

1.21

0.88

1.27

0.88

shuttle_eddy
0

f

0.44

0.98

0.51

0.87

0.62

0.98

0.66

0.87

0.65

0.87

ford2
0

f

6.67

12.19

7.86

9.01

8.05

11.41

8.78

9.15

8.81

8.57

tandem.vtx
0

f

2.25

31.64

2.45

20.95

1.82

30.02

2.11

19.05

2.17

16.34

pdslO
o

f

89.52

41.60

103.74

41.50

3.88

40.86

4.46

39.66

4.43

42.51

copterl
0

f

2.50

42.15

2.62

34.98

2.01

39.50

2.38

31.81

2.80

31.18

tandem.dual
0

f

11.34

256.46

12.32

205.72

9.84

224.28

11.26

146.66

11.15

121.28

onera-dual
0

f

10.78

344.38

11.70

214.66

8.98

261.60

10.35

191.71

10.55

136.83

copter2
0

f

11.74

413.02

12.27

259.38

7.85

364.55

9.32

234.47

9.45

218.37

factorization, and a two-dimensional (2-D) mapping during the parallel triangular solves. It would be harder

to support pivoting with a mapping of the matrix. The factorization algorithms are not as scalable as parallel

algorithms that employ the 2-D mapping.

SPOOLES covers more ground than we have done, as it has solvers for symmetric and unsymmetric

systems of equations, as well as over-determined systems. It does not have all of the minimum priority

orderings in Spindle.

SPOOLES is implemented in C, which is generally more portable than C++. The C programming

language is a procedural language and not designed to support object-oriented semantics of inheritance,

automatic construction and destruction of objects, polymorphism, template containers, etc. These can be

emulated in C, but it falls upon the library developer and the user to adhere to certain programming styles

with no help or enforcement from the compiler.

26

TABLE 7.3

Factorization results obtained with the positive definite code.

nonzeros in L real-valued complex -valued

problem (subdiagonal) perf.

(Mfl/s)

error perf.

(Mfl/s)

error

commanche 70,308 12.1 6e-17 37.0 le-16

barth4 110,054 21.6 4e-17 58.3 8e-17

fordl 313,855 28.6 2e-17 72.6 3e-17

barth5 364,751 28.8 5e-17 75.2 le-16

shuttle_eddy 390,020 37.2 4e-17 89.6 7e-17

ford2 2,463,669 32.2 2e-17 75.5 2e-17

tandem_vtx 2,708,953 36.2 9e-17 69.3 le-16

pdslO 1,634,148 27.2 2e-17 53.0 3e-17

copter1 2,470,144 32.0 2e-16 69.8 2e-16

ken 13 334,470 16.3 le-17 42.0 6e-18

tandem-dual 11,796,630 34.5 le-16 69.9 2e-16

onera.dual 12,028,652 34.7 le-16 69.5 2e-16

copter2 14,977,651 33.8 7e-17 67.1 le-16

TABLE 7.4

Factorization results obtained with the indefinite code.

problem
nonzeros in L time perf. error

(subdiagonal) (s) (Mfl/s)

shell 139,643 0.33 19.7 le-17

rev7a 580,599 2.95 26.7 7e-17

nok 2,346,692 17.74 34.5 le-19

e20r0000 369,843 2.47 22.1 2e-18

e30r0000 1,133,759 10.30 24.0 le-18

e40r0000 2,451,480 27.11 27.3 le-18

helmholtzO 129,525 0.56 66.3 3e-17

helmholtzl 619,292 4.64 58.5 4e-17

helmholtz2 3,106,177 39.45 66.9 5e-17

9. Lessons Learned.

9.1. General Comments. It is difficult to create general solutions to software design problems. Often

a solution that seems good in a particular context becomes unsatisfactory when the context is extended.

For example, the initial design of 06U0 did not decouple algorithms from data structures. It was initially

implemented in C instead of C++. When 06U0 was ported to C++, the structs were converted to classes and
algorithms were made methods of these classes. This introduced several difficulties. First, the association

was not natural. Is an ordering algorithm supposed to be associated with a matrix or with a permutation?

Second, this solution was neither flexible nor extensible. These problems led us later to the natural and

general solution in which we introduced algorithmic classes.

One area where we continue to struggle for the "right" solution is with shared objects. This happens, for

27

example, with an ordering algorithm and a coefficient matrix since the matrix exists outside the algorithm

but it also has a copy inside the algorithm, as the algorithm's input. Since the matrix is built before the

ordering algorithm is run, the input may just be a pointer to the matrix, an external object. What happens

with the output of the ordering algorithm (the Permutation object) is trickier to manage.

Currently, we have a limited approach for the ownership of dynamically allocated data inside structural

objects. It is not desirable to allocate separate copies for different copies of the same entity. We have used

two approaches until now. In the first, the output object also exists before the algorithm is run (it can

be empty) and the algorithm packs the empty class with information. The second approach lets algorithm

classes construct the output classes internally and spawn ownership (and cleanup responsibilities) of only

the outputs that the user requests.

The preallocation scheme is simple and makes responsibility of instance reclamation obvious. The

downside of this is that an algorithm's output has to be allocated and assigned to it before the algorithm is

run. It is less intuitive than running the algorithm and querying the results. Spmöfe's fill-reducing orderings

construct the parent pointers for the elimination forest in the normal course of computing the ordering. One

user may indeed want a permutation, but others may want the elimination forest. It is inelegant to force

users to pre-initialize output classes that they are not even interested in.

The approach of having shared objects and explicitly transferring ownership can be complicated to use

and is more prone to programmer error. This is, however, much easier to implement than another method

for sharing large data structures: reference counting.

Full reference counting requires an interface class for each class that can be shared. An additional layer

is needed to provide a counter that counts the number of interfaces that access the current instance. This

gives more flexibility in assigning inputs and outputs (outputs can actually be built before or later). Changes

are then seen by all interfaces and memory deallocation occurs correctly when the last interface is destroyed.

The problem of unwanted changes by another interface is eliminated by performing "deep-copy" on write.

9.2. Judicious Application of Iterators. One disappointing endeavor was to provide an iterator class

to traverse the reachable set of the QuotientGraph class. The idea was to provide an adjacency iterator for an

EliminationGraph class, a reachable set iterator for the QuotientGraph class, and a collection of minimum

priority algorithms that were totally unaware of whether it was operating on an elimination graph or a

quotient graph. Although we were successful in implementing the ReachableSetlter class, its performance

was so poor, that its general use was abandoned. This required the minimum priority algorithms to be

specific to the QuotientGraph class and iterate directly over the enode and supernode adjacency lists. This

increased the complexity of the interface and the coupling between data-structure and algorithm, but also

significantly improved the performance. Here we explain why this idea looked good on paper, why it did not

work well in practice, and why this problem is unavoidable.

Ideally, one would like to provide a class that iterates over the reachable set so that the priority com-

putation can be implemented cleanly. In Fig. 9.1 this class is typedef ed inside the QuotientGraph class as

reach_iterator. We add the additional detail that a weight might be associated with each supernode, so

the degree computation sums the weights of the nodes in the reachable set.

Internally, we expected the reachable set iterator to have much in common with the C++ standard

deque:: iterator. A deque is a doubly ended queue that is commonly implemented as a vector of pointers

to pages of items. The deque can easily add or remove items from each end by checking the first or last

pages, and adding or deleting pages as necessary. The iterator of a deque need only advance to the end of

a page, then jump to the next page. In the context of a quotient graph, an enode is much like a page with

28

void MinimumDegree::prioritize(const QGraphft g, Listft 1, >

PriorityQueueft pq)

{
for(List: :iterator it = 1.begin(); it != I.endO; ++it) {

int i = *it;

int degree = 0;

for(QGraph::reach_iterator j = g.reach_begin(i);

j != g.reach.end(i); ++j) {

degree += g.getNodeWeight(*j)

}
pq.insert(degree, i);

}
}

FIG. 9.1. Computing the degree of all the nodes in List the elegant (but inefficient) way using reachable set iterators. The

innocuous looking ++it hides a cascade of if-then-else tests that must be performed at each call.

each having a list of items; namely supernodes.

There are, unfortunately, some critical differences. In a deque, the size of each page is known a priori,

which is not true for the supernodes adjacent to an enode. Furthermore, the same supernode may be

reachable through two different enodes. The reachable set need not be traversed in sorted order (as presented

in Fig. 5.1), but it cannot allow the same supernode to be counted twice through two different enodes.

Furthermore, the reachable set does not include the node itself.

We were able to implement such an iterator, but there is a hidden overhead that causes the code fragment

in Fig. 9.1 to be too expensive. A reachable set is the union of several non-disjoint sets; and therefore the

iterator must test at each iteration if there are any more items in the current set, if there are any more sets,

and use some internal mechanism to prevent double visiting the same node in different sets.

Most of the details for the ReachableSetlter are not difficult, but the increment operator is excessively

tedious. The problem is that the increment operator must redetermine its state at each call: Is it already

at the end of the adjacency list? Are there more nodes or enodes in the current list? Once a next node

has been located, has it been marked? The alternative is to evaluate the reachable set by iterating over

sets of adjacent nodes and enodes of the quotient graph manually. This is shown in Figure 9.2 which is

functionally equivalent to the code in Figure 9.1. In this case, the state information is implicit in the loop

and not confined to the increment operator, which allows for the entire process to execute more efficiently.

The lesson learned here is to be judicious in the use of fancy techniques. The coding benefits of using

a reachable set iterator are far outweighed by the increase in performance in manually running through the

adjacency lists. The latter scheme makes the critical assumption that every node has a "self-edge" to itself in

the list of adjacent enodes. This convenient assumption also increases coupling between the QuotientGraph.

class and the descendants of the MinimumPriorityStrategy class.

9.3. Conclusions. There is no inherent conflict between object-oriented design and efficient direct

solvers in scientific computing. Some features of C++ such as function inlining, templates, encapsulation,

and inheritance suffer no performance penalties and can be used aggressively. Other features such as virtual

functions, excessive temporary objects that can result from operator overloading, and hidden copy construc-

tion can significantly degrade performance if left unchecked. The target of object-oriented design must be

29

void MinimumDegree::prioritize(const QGraphfe g, List& 1, '

PriorityQueueft pq)

{
for(List: :iterator it = l.beginO; it != I.endO; ++it) {

int i = *it;

int degree = 0;

int my.stamp = nextStampO ;// get new timestamp

g.visited[i] = my-stamp; //Mark myself visited

for(QGraph::enode_iterator e = g.enode_begin(i);

e != g.enode_end(i); ++e) {

int enode = *e; //for all adjacent enodes

for(QGraph::node.iterator j = g.node_begin(e);

j != g.enode.end(e); ++j) {

int adj = * j ; // for all adjacent nodes

if (visited[adj] < my-stamp) {

// if not already visited, mark it and add to degree

visited[adj] = my-Stamp;

degree += g.getNodeWeight(adj);

}
}

}
pq.insert(degree, i);

}

FIG. 9.2. Computing degree without using the reachable set iterators. This piece of code is not as elegant as the equivalent

fragment in Figure 9.1, but in terms of efficiency , this method is the clear winner. In this case, the visited array is part
of the MinimumPriorityStrategy base class along with the nextStampO member function that always returns a number larger
than any previous number. If the next stamp is the maximum integer, then the visited array is reinitialized to all zeros.

the higher layers of the software. With direct solvers they are the most sophisticated, taking most of the

code, but just a small fraction of the execution time. There is not much room for abstraction in low level

loops, so the focus there must be on performance.

We have learned that good design requires tradeoffs. There is no perfect solution, unless we are talking

about artificial problems typically constructed for pedagogical use. Real-life applications have many con-
straints, many that conflict with each other, and it is difficult to satisfy all of them. The solution is to

prioritize the constraints and to satisfy those with high priorities. An example is decoupling, which intro-
duces an overhead since objects have to communicate through well defined interfaces. By decoupling we can

localize potential changes in the code, and this is one of the properties that make object-oriented software

appealing. To avoid overheads, we have weakened the encapsulation in performance-critical parts of the

code.
Well-designed object-oriented software that is implemented in C++ leads to libraries that are easier

to use, more flexible, more extensible, safer, and just as efficient as libraries implemented in C or Fortran.

Designing and implementing a "good" object-oriented library is also significantly harder. Implementing

sparse direct solvers cleanly and efficiently using object-oriented techniques is an area where challenging

research issues remain.

30

Acknowledgments. We thank our colleague, David Hysom, who worked on the integration of our

codes into PETSc, provided user feedback, and participated in our spirited debates. We are grateful to

Cleve Ashcraft for many engaging technical conversations and Socratic dialogues. Thanks also to the PETSc

team: Satish Balay, Lois Mclnnes, Barry Smith and Bill Gropp, for being so helpful—even with non-PETSc

specific issues. Finally, we thank David Keyes for his enthusiasm and support.

REFERENCES

[1] P. AMESTOY, T. A. DAVIS, AND I. S. DUFF, An approximate minimum degree ordering

algorithm, SIAM J. Matrix Anal. Appl., 17, No. 4 (1996), pp. 886-905.

[2] C. ASHCRAFT, R. G. GRIMES, AND J. G. LEWIS, Accurate symmetric indefinite linear equation

solvers, SIAM J. Matrix Anal. Appl, 20 (1999), pp. 513-561.

[3] C. ASHCRAFT AND J. W. H. Liu, SMOOTH: A software package for ordering sparse matrices,

Nov. 1996. http://www.cs.yorku.ca/~joseph/SMOOTH.html.

[4] C. ASHCRAFT, D. PIERCE, D. K. WAH, AND J. Wu, The Reference Manual for SPOOLES,

Release 2.2, Feb. 1999.

[5] S. BALAY, W. D. GROPP, L. C. MCINNES, AND B. F. SMITH, Efficient management of

parallelism in object-oriented numerical software libraries, in Modern Software Tools for

Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, (eds.), Birkhäuser,

1997.

[6] A. M. BRUASET AND H. P. LANGTANGEN, Object-oriented design of preconditioned iterative

methods in DIFFPACK, ACM Transactions on Mathematical Software, 23 (1997), pp. 50-

80.

[7] R. BOISVERT, R. Pozo, K. REMINGTON, R. BARRETT, AND J. DONGARRA, Matrix Mar-

ket: A web resource for test matrix collections, in Numerical Software: Assessment and

Enhancement, R. Boisvert, (ed.), Chapman and Hall, pp. 125-137, London, 1997.

[8] F. DOBRIAN, G. KUMFERT, AND A. POTHEN, Object-oriented design of a sparse symmetric

solver, in Computing in Object-oriented Parallel Environments, Lecture Notes in Computer

Science 1505, D. Caromel et al., (eds.), pp. 207-214, Springer Verlag, 1998.

[9] I. S. DUFF, R. G. GRIMES, AND J. G. LEWIS, Users' Guide for the Harwell-Boeing Sparse

Matrix Collection, Oct. 1992.

[10] DIFFPACK homepage: http://www.nobjects.com/Diffpack.

[11] I. S. DUFF AND J. K. REID, The multifrontal solution of indefinite sparse symmetric linear

equations, ACM Trans, on Math. Software, 9, No. 3 (1983), pp. 302-325.

[12] I. S. DUFF, A. ERISMAN, AND J. K. REID, Direct Methods for Sparse Matrices, Clarendon

Press, Oxford, 1986.

[13] E. GAMMA, R. HELM, R. JOHNSON, AND J. VLISSIDES, Design Patterns: Elements of Reusable

Object-oriented Software, Professional Computing Series, Addison Wesley Longman, 1995.

[14] A. GEORGE AND J. W. H. Liu, A fast implementation of the minimum degree algorithm using

quotient graphs, ACM Trans, on Math. Software, 6 (1980), pp. 337-358.

[15] A. GEORGE AND J. W. H. LIU, Computer Solution of Large, Sparse, Positive Definite Systems,

Prentice Hall, 1981.

[16] A. GEORGE AND J. W. H. Liu, The evolution of the minimum degree algorithm, SIAM Rev.,

31

31, No. 1 (1989), pp. 1-19.

[17] A. GEORGE AND J. W. H. LIU, An object-oriented approach to the design of a user interface

for a sparse matrix package, Technical Report, Department of Computer Science, York

University, Feb. 1997.

[18] B. HENDRICKSON AND R. LELAND, The Chaco User's Guide, Sandia National Laboratories,

Albuquerque, NM 87815, Oct. 1993.

[19] G. KUMFERT AND A. POTHEN, Two improved algorithms for envelope and wavefront reduction,

BIT, 37 (1997), pp. 559-590.

[20] G. KUMFERT AND A. POTHEN, An object-oriented collection of minimum degree algorithms:

Design, implementation, and experiences, in Computing in Object-oriented Parallel Environ-

ments, Lecture Notes in Computer Science 1505, D. Caromel et al., (eds.), Springer Verlag,

pp. 95-106, 1998.

[21] J. LAKOS, Large-scale C++ Software Design, Professional Computing Series, Addison-Wesley,

1996.

[22] H. P. LANGTANGEN, Computational Partial Differential Equations: Numerical Methods and

DIFFPACK Programming, Springer-Verlag, 1999.

[23] J. W. H. LiU, Modification of the minimum-degree algorithm by multiple elimination, ACM

Trans, on Math. Software, 11 (1985), pp. 141-153.

[24] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.

Appl, 11, No. 1 (1990), pp. 134-172.

[25] J. W. H. Liu, The multifrontal method for sparse matrix solution: Theory and practice, SIAM

Rev., 34, No. 1 (1992), pp. 82-109.

[26] E. G. Y. NG AND P. RAGHAVAN, Performance of greedy ordering heuristics for sparse Cholesky

factorization, Technical Report, Computer Science Department, University of Tennessee,

Knoxville, 1997.

[27] PETSc homepage: http://www.mcs.anl.gov/petsc/petsc.html.

[28] E. ROTHBERG AND S. EISENSTAT, Node selection strategies for bottom-up sparse matrix

ordering, SIAM J. Matrix Anal. Appl, 19, No. 3 (1998), pp. 682-695.

[29] E. ROTHBERG, Ordering sparse matrices using approximate minimum local fill, Preprint, SGI,

Apr. 1996.
[30] SPOOLES homepage: http://www.netlib.0rg/linalg/spooles/spooles.2.2.html.

[31] T. L. VELDHUIZEN, Blitz++: The library that thinks it is a compiler, in Modern Software Tools

in Scientific Computing, A. M. Bruaset, H. P. Langtangen and E. Quak, (eds.), Springer-

Verlag, 1999, to appear.

32

